45 research outputs found

    Pre-transplant CDKN2A expression in kidney biopsies predicts renal function and is a future component of donor scoring criteria

    Get PDF
    CDKN2A is a proven and validated biomarker of ageing which acts as an off switch for cell proliferation. We have demonstrated previously that CDKN2A is the most robust and the strongest pre-transplant predictor of post- transplant serum creatinine when compared to “Gold Standard” clinical factors, such as cold ischaemic time and donor chronological age. This report shows that CDKN2A is better than telomere length, the most celebrated biomarker of ageing, as a predictor of post-transplant renal function. It also shows that CDKN2A is as strong a determinant of post-transplant organ function when compared to extended criteria (ECD) kidneys. A multivariate analysis model was able to predict up to 27.1% of eGFR at one year post-transplant (p = 0.008). Significantly, CDKN2A was also able to strongly predict delayed graft function. A pre-transplant donor risk classification system based on CDKN2A and ECD criteria is shown to be feasible and commendable for implementation in the near future

    The role of epigenetics in renal ageing

    Get PDF
    An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects

    Evidence for the Complexity of MicroRNA-Mediated Regulation in Ovarian Cancer: A Systems Approach

    Get PDF
    MicroRNAs (miRNAs) are short (∼22 nucleotides) regulatory RNAs that can modulate gene expression and are aberrantly expressed in many diseases including cancer. Previous studies have shown that miRNAs inhibit the translation and facilitate the degradation of their targeted messenger RNAs (mRNAs) making them attractive candidates for use in cancer therapy. However, the potential clinical utility of miRNAs in cancer therapy rests heavily upon our ability to understand and accurately predict the consequences of fluctuations in levels of miRNAs within the context of complex tumor cells. To evaluate the predictive power of current models, levels of miRNAs and their targeted mRNAs were measured in laser captured micro-dissected (LCM) ovarian cancer epithelial cells (CEPI) and compared with levels present in ovarian surface epithelial cells (OSE). We found that the predicted inverse correlation between changes in levels of miRNAs and levels of their mRNA targets held for only ∼11% of predicted target mRNAs. We demonstrate that this low inverse correlation between changes in levels of miRNAs and their target mRNAs in vivo is not merely an artifact of inaccurate miRNA target predictions but the likely consequence of indirect cellular processes that modulate the regulatory effects of miRNAs in vivo. Our findings underscore the complexities of miRNA-mediated regulation in vivo and the necessity of understanding the basis of these complexities in cancer cells before the therapeutic potential of miRNAs can be fully realized

    Preterm infants have significantly longer telomeres than their term born counterparts

    Get PDF
    There are well-established morbidities associated with preterm birth including respiratory, neurocognitive and developmental disorders. However several others have recently emerged that characterise an `aged' phenotype in the preterm infant by term-equivalent age. These include hypertension, insulin resistance and altered body fat distribution. Evidence shows that these morbidities persist into adult life, posing a significant public health concern. In this study, we measured relative telomere length in leukocytes as an indicator of biological ageing in 25 preterm infants at term equivalent age. Comparing our measurements with those from 22 preterm infants sampled at birth and from 31 term-born infants, we tested the hypothesis that by term equivalent age, preterm infants have significantly shorter telomeres (thus suggesting that they are prematurely aged). Our results demonstrate that relative telomere length is highly variable in newborn infants and is significantly negatively correlated with gestational age and birth weight in preterm infants. Further, longitudinal assessment in preterm infants who had telomere length measurements available at both birth and term age (n = 5) suggests that telomere attrition rate is negatively correlated with increasing gestational age. Contrary to our initial hypothesis however, relative telomere length was significantly shortest in the term born control group compared to both preterm groups and longest in the preterm at birth group. In addition, telomere lengths were not significantly different between preterm infants sampled at birth and those sampled at term equivalent age. These results indicate that other, as yet undetermined, factors may influence telomere length in the preterm born infant and raise the intriguing hypothesis that as preterm gestation declines, telomere attrition rate increases

    Telomere Length Impacts on Allograft Function Post Kidney Transplant

    No full text
    Allograft biological age, as defi ned by CDKN2A expression, has recently been demonstrated to be a superior pre-transplant predictive marker for post-transplant function. Traditionally however, bio-ageing has been assessed through a measurement of telomere length. With age and increased environmental stress, telomere length is shortened which in turn may be adversely related to donor organ function. We measured renal pre-implantation telomere length and determined associations with organ function at six months post-transplant with a view to using it as a further bio-marker in kidney transplantation, which may be used in combination with CDKN2A and donor chronological age.MethodsDNA was extracted from time zero biopsies (n=32) using a Maxwell®16 DNA purifi cation robot and quantifi ed using a Nanodrop apparatus. Telomere length determination was by Q-PCR. Telomere length was then analysed with respect to donor age and sex, cold ischaemic time, delayed graft function and renal function 6 months post-transplant as determined by serum creatinine (SC) levels.ResultsDonor telomere length was observed to shorten as a function of increasing chronological age (p=0.018). No signifi cant difference was observed with respect to sex of the allograft, cold ischaemic time and frequency of delayed graft function. We did however, observe signifi cantly inferior renal function, in those who received organs with shorter telomere lengths (p=0.025) at six months post-operatively. Linear regression analysis indicated that at 6 months post-transplant, donor age explains 12.0% of the variability in SC levels, while telomere length accounted for 7.9%.ConclusionsThis study confi rms that measurement of donor bio-age pre-transplant can predict post-transplant function. It indicates that telomere length is inferior to donor chronological age when it is used as a bio-marker. This is in keeping with previous observations indicating that CDKN2A is a superior bio-marker. Telomere length in addition to donor age and other promising bio-markers of ageing may provide a valuable pre-transplant prognostic score on organ quality, allowing for targeted intervention strategies to preserve graft function

    Maternal cigarette smoking and its effect on neonatal lymphocyte subpopulations and replication

    Get PDF
    Background Significant immunomodulatory effects have been described as result of cigarette smoking in adults and pregnant women. However, the effect of cigarette smoking during pregnancy on the lymphocyte subpopulations in newborns has been discussed, controversially. Methods In a prospective birth cohort, we analyzed the peripheral lymphocyte subpopulations of smoking (SM) and non-smoking mothers (NSM) and their newborns and the replicative history of neonatal, mostly naive CD4 + CD45RA + T cells by measurements of T-cell-receptor-excision-circles (TRECs), relative telomere lengths (RTL) and the serum cytokine concentrations. Results SM had higher lymphocyte counts than NSM. Comparing SM and NSM and SM newborns with NSM newborns, no significant differences in proportions of lymphocyte subpopulations were seen. Regardless of their smoking habits, mothers had significantly lower naive T cells and higher memory and effector T cells than newborns. NSM had significantly lower percentages of CD4 + CD25++ T cells compared to their newborns, which was not significant in SM. There were no differences regarding cytokine concentrations in newborns of SM and NSM. However, NSM had significantly higher Interleukin-7 concentrations than their newborns. Regardless of smoking habits of mothers, newborns had significantly longer telomeres and higher TRECs than their mothers. Newborns of SM had significantly longer telomeres than newborns of NSM. Conclusions Apart from higher lymphocyte counts in SM, our results did not reveal differences between lymphocyte subpopulations of SM and NSM and their newborns, respectively. Our finding of significantly longer RTL in newborns of SM may reflect potential harm on lymphocytes, such as cytogenetic damage induced by smoking
    corecore